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年賀状にはお年玉くじが付いていて、6桁の数字が当選番号に合致すると

賞品をもらうことができる。例年、1等の当選番号は6桁で1つ（100万本に
1本）、2等は下4桁で1つ（1万本に1本）、3等の当選番号は下2桁で2つ
（100本に2本）である。
※2019年以降、3等の当選番号が下2桁で3つ（100本に3本）になった。

毎年100枚くらいの年賀状が届く場合、当選本数から考えて、1等や2等が
当たる可能性は低く、当たる可能性が高いのは3等（例年、賞品は年賀切手
シート）である。

3等が100本に2本なのであれば、届いた100枚の年賀状の中には、2つの
当選番号がそれぞれ1枚ずつありそうだが、それは正しいだろうか？

年賀状のお年玉くじ
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2008年以降（2012年と2014年は喪中のため除く）の当選枚数を下表に示す。

年賀状の当選枚数（実際）

年 干支 届いた枚数 当選番号
各番号の
当選枚数

当選枚数
の合計

2008年 平成20年 子 95 37 64 2 0 2

2009年 平成21年 丑 104 46 94 1 1 2

2010年 平成22年 寅 95 00 52 0 2 2

2011年 平成23年 卯 104 02 69 0 2 2

2013年 平成25年 巳 102 29 70 0 1 1

2015年 平成27年 未 98 27 30 0 1 1

2016年 平成28年 申 96 69 90 0 1 1

2017年 平成29年 酉 95 45 51 0 1 1

2018年 平成30年 戌 93 27 68 1 1 2
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2019年以降の当選枚数を下表に示す。

年賀状の当選枚数（実際）

年 干支 届いた枚数 当選番号
各番号の
当選枚数

当選枚数
の合計

2019年 平成31年 亥 92 02 42 78 0 1 0 1

2020年 令和2年 子 86 16 37 67 0 1 0 1

2021年 令和3年 丑 95 50 58 60 2 1 0 3

2022年 令和4年 寅 86 02 50 54 0 1 0 1

2023年 令和5年 卯 84 11 42 73 1 0 1 2

2024年 令和6年 辰 77 00 69 71 2 0 2 4

2025年 令和7年 巳 70 32 65 86 2 0 0 2

2026年 令和8年 午 68 44 73 84 1 0 0 1
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前掲の表中、当選本数の割合が100本に2本だった9年（2008～2018年、喪

中を除く）のうち、2枚当たった年が5回で、1枚当たった年が4回だった。2
枚当たった年も、2つの当選番号が1枚ずつ当たったのは2回だけで、そ
れ以外の3回は一方の当選番号が2枚、他の当選番号は0枚だった。

また、当選本数の割合が100本に3本になった2019年以降の8年では、3
つの当選番号の枚数（順不同）が（1,0,0）だった年が4回あった。2023年
は（1,1,0）で計2枚、2025年は（2,0,0）だった。2021年は（2,1,0）で計3枚、
2024年は（2,2,0）で計4枚だった。

つまり、17年で42通りの当選番号のうち、3枚以上当たったものはなく、
2枚当たったのは7通り、1枚当たったのは15通り、0枚だったのは20通り
だった。

年賀状の当選枚数（実際）
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前掲の結果（17年で42通りの当選番号のうち、20通りは0枚）は、一見、0枚だっ

た当選番号が多すぎるようにも思えるが、これは年賀状の番号がランダム
に届くとすると、定性的には妥当である。

なぜなら、ランダムならば、ある1枚の年賀状の番号は他の年賀状の番号
とは無関係に決まるからである。100枚の年賀状が届くとき、00から99まで
の100通りの番号が均等に1枚ずつ届くのは、むしろランダムではない。あ
る1つの番号の枚数の期待値は1枚であるが、0枚の番号も2枚以上の番
号もあり、全ての番号についての平均値が1枚になるというだけである。し
たがって、ある1つの当選番号が0枚でも不思議ではない。

それでは、年賀状の番号がランダムに届くとき、その番号の分布はどのよ
うになるのだろうか？

年賀状の当選枚数（考察）
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0から 𝑀 − 1 までの番号（下2桁の場合は 𝑀 = 100）のうちの1つが書か
れた年賀状をランダムに 𝑛 枚受け取ったとき、同じ番号の年賀状が何枚
あるかを考える。

ある番号の年賀状を 𝑘 枚（0 ≤ 𝑘 ≤ 𝑛）受け取る確率 𝑃 𝑘  は、𝑛 枚のうち 
𝑘 枚がその番号で、残りの 𝑛 − 𝑘 枚がそれ以外の番号になることから

𝑃 𝑘 = 𝑛𝐶𝑘
1

𝑀

𝑘

1 −
1

𝑀

𝑛−𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!

1

𝑀𝑘

𝑀 − 1 𝑛−𝑘

𝑀𝑛−𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!

𝑀 − 1 𝑛−𝑘

𝑀𝑛

であり、これは発生確率が 𝑝 = Τ1 𝑀 の二項分布である。

二項分布
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二項分布は、𝑀 ≫ 1のとき、𝑛 ≫ 𝑘 となるから

𝑃 𝑘 =
𝑛!

𝑛 − 𝑘 ! 𝑘!

1

𝑀𝑘

𝑀 − 1 𝑛−𝑘

𝑀𝑛−𝑘

=
𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1

𝑀𝑘

1

𝑘!
1 −

1

𝑀

𝑛−𝑘

=
𝑛

𝑀

𝑛 − 1

𝑀
⋯
𝑛 − 𝑘 + 1

𝑀

1

𝑘!
1 −

1

𝑀

𝑛−𝑘

≅
𝑛

𝑀

𝑘 1

𝑘!
1 −

1

𝑀

𝑛

=
𝜇𝑘

𝑘!
1 −

𝜇

𝑛

𝑛

≅
𝜇𝑘

𝑘!
𝑒−𝜇

と近似できる。ここで、𝜇 = Τ𝑛 𝑀 とおいた。これは平均値 𝜇 のポアソン分布
である。

ポアソン分布
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二項分布

𝑃 𝑘 =
𝑛!

𝑛 − 𝑘 ! 𝑘!

𝑀 − 1 𝑛−𝑘

𝑀𝑛

および、ポアソン分布（𝜇 = Τ𝑛 𝑀）

𝑃 𝑘 =
𝜇𝑘

𝑘!
𝑒−𝜇

において、𝑀 = 100, 𝑛 = 100 のとき
の 𝑃 𝑘  の値を右表に示す。両者は、
ほぼ一致している。

𝑃 0 ≅ 0.37であるから、100通りの
番号のうち約37通りは0枚である。

二項分布とポアソン分布

𝑘
二項分布

（𝑀 = 𝑛 = 100）
ポアソン分布
（𝜇 = 1）

0 0.3660 0.3679

1 0.3697 0.3679

2 0.1849 0.1839

3 0.0610 0.0613

4 0.0149 0.0153

5 0.0029 0.0031

6 4.6×10-4 5.1×10-4

7 6.3×10-5 7.3×10-5

8 7.4×10-6 9.1×10-6
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2008年に届いた年賀状（𝑛 = 95）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）と
ほぼ一致している。

年賀状の番号と枚数（実測）：2008年

番号

枚
数

枚数 𝑘

頻
度
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2009年に届いた年賀状（𝑛 = 104）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 1, 5, 7 の頻度が高くて 𝑘 = 2 の頻度が低く、少し外れている。

年賀状の番号と枚数（実測）：2009年

番号

枚
数

枚数 𝑘

頻
度
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2010年に届いた年賀状（𝑛 = 95）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
近い分布となっている。

年賀状の番号と枚数（実測）：2010年

番号

枚
数

枚数 𝑘

頻
度
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2011年に届いた年賀状（𝑛 = 104）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 1 の頻度が低くて 𝑘 = 3 の頻度が高く、少し外れている。

年賀状の番号と枚数（実測）：2011年

番号

枚
数

枚数 𝑘

頻
度
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2013年に届いた年賀状（𝑛 = 102）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
近い分布となっている。

年賀状の番号と枚数（実測）：2013年

番号

枚
数

枚数 𝑘

頻
度
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2015年に届いた年賀状（𝑛 = 98）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 0, 2 の頻度が高くて 𝑘 = 1 の頻度が低く、乖離している。

年賀状の番号と枚数（実測）：2015年

番号

枚
数

枚数 𝑘

頻
度
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2016年に届いた年賀状（𝑛 = 96）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
ほぼ一致している。

年賀状の番号と枚数（実測）：2016年

番号

枚
数

枚数 𝑘

頻
度
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2017年に届いた年賀状（𝑛 = 95）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
近い分布となっている。

年賀状の番号と枚数（実測）：2017年

番号

枚
数

枚数 𝑘

頻
度
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2018年に届いた年賀状（𝑛 = 93）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と 𝑘 = 2 の頻度が高く、少し外れている。

年賀状の番号と枚数（実測）：2018年

番号

枚
数

枚数 𝑘

頻
度
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2019年に届いた年賀状（𝑛 = 92）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
ほぼ一致している。

年賀状の番号と枚数（実測）：2019年

番号

枚
数

枚数 𝑘

頻
度
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2020年に届いた年賀状（𝑛 = 86）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 0 の頻度が高くて 𝑘 = 1 の頻度が低く、少し外れている。

年賀状の番号と枚数（実測）：2020年

番号

枚
数

枚数 𝑘

頻
度
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2021年に届いた年賀状（𝑛 = 95）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 0 の頻度が低くて 𝑘 = 1 の頻度が高く、少し外れている。

年賀状の番号と枚数（実測）：2021年

番号

枚
数

枚数 𝑘

頻
度
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2022年に届いた年賀状（𝑛 = 86）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
ほぼ一致している。

年賀状の番号と枚数（実測）：2022年

番号

枚
数

枚数 𝑘

頻
度
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2023年に届いた年賀状（𝑛 = 84）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
良く一致している。

年賀状の番号と枚数（実測）：2023年

番号

枚
数

枚数 𝑘

頻
度
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2024年に届いた年賀状（𝑛 = 77）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
ほぼ一致している。

年賀状の番号と枚数（実測）：2024年

番号

枚
数

枚数 𝑘

頻
度
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2025年に届いた年賀状（𝑛 = 70）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。二項分布/ポアソン分布による計算結果（赤丸/実線）と比べる
と、𝑘 = 1, 3 の頻度が低くて 𝑘 = 2 の頻度が高く、かなり外れている。

年賀状の番号と枚数（実測）：2025年

番号

枚
数

枚数 𝑘

頻
度
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2026年に届いた年賀状（𝑛 = 68）の下2桁の各番号が何枚あったかを下
左図に示す。また、下右図の棒グラフは同じ番号が 𝑘枚あった番号の頻
度を示す。頻度は二項分布/ポアソン分布による計算結果（赤丸/実線）に
ほぼ一致している。

年賀状の番号と枚数（実測）：2026年

番号

枚
数

枚数 𝑘

頻
度
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2008～2026年（2012年, 2014年を除く）の17年に届いた年賀状（𝑛 = 1540）の
下2桁の各番号が何枚あったかを下左図に示す。また、下右図の棒グラフ
は同じ番号が 𝑘枚あった番号の頻度を示す。二項分布による計算結果
（赤実線）と比べると、𝑘 = 16, 19 の頻度が高いが、概ね一致している。

年賀状の番号と枚数（実測）：2008～2026年

番号

枚
数

枚数 𝑘

頻
度
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2008年に届いた年賀状（𝑛 = 95）に
ついて、𝜒2検定を行う。同じ番号が 𝑘
枚あった番号の頻度の実測値を 𝑂𝑘、
二項分布による期待値を 𝐸𝑘 として

𝜒2 =෍

𝑘

𝜒𝑘
2 =෍

𝑘

𝑂𝑘 − 𝐸𝑘
2

𝐸𝑘

を求めると、右表に示すように 𝜒2 =
0.55 となる。ただし、𝐸𝑘 > 5 となるよ
うに 𝑘 ≥ 3はひとまとめとした。

𝜒2検定：2008年

𝑘 実測
二項分布
（𝑛 = 95）

𝜒𝑘
2

0 36 38.49 0.16

1 39 36.93 0.12

2 19 17.53 0.12

>3 6 7.04 0.15

計 100 100 0.55

自由度 3 の 𝜒2分布において、𝜒2 = 0.55 となる差が見いだされる確率は
0.91 であり、統計学的有意水準（0.05または0.01）より大きい。



28

2008～2026年（2012年, 2014年を除く）の17年について、二項分布に対する 
𝜒2 を下図に示す。自由度 3 の 𝜒2分布において、それより大きな差が見い
だされる確率が 𝑝 = 0.05 となるのは 𝜒2 = 7.81 のとき、𝑝 = 0.01 となるの
は 𝜒2 = 11.34のときである。

𝜒2検定：2008～2026年

2015年は 𝜒2 = 9.94で、𝑝 = 0.05 
となる 𝜒2 = 7.81 を上回っている
が、それ以外の年は 𝜒2 = 7.81 を
下回っていて 𝑝 > 0.05 である。

よって、年賀状の番号の分布が
二項分布にしたがっているという
仮説は棄却されないと言える。

年

𝜒
2

𝑝 = 0.05

𝑝 = 0.01
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自分宛てに届く年賀状のお年玉くじの下2桁の番号は、00～99の100通り
が均等には分布していない。

年賀状の番号がランダムに届くとすれば、その分布は二項分布（ポアソ
ン分布）になる。

100枚の年賀状が届く場合、下2桁の番号100通りのうち約37通りは0枚で
あると見積もられる。

まとめ

いつも年賀状をいただく皆様、これまで年賀状をいただいた皆様に心より
感謝申し上げます。

謝辞
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100通り（𝑀 = 100）の番号の中に当選番
号が2通りあるとき、届いた 𝑛枚のうち 𝑙枚
が当たる確率は

෍

𝑖=0

𝑙

𝑃 𝑖 𝑃 𝑙 − 𝑖

となる。𝑀 = 100, 𝑛 = 100 の二項分布に
ついての計算結果を右表に示す。

100枚の年賀状が届く場合、1枚も当たらな
い確率は約13%あり、1枚だけ当たる確率
は約27%、2枚が当たる確率は約27%、3枚
以上が当たる確率は約32%である。

補足：当選枚数の確率

𝑙 確率 累積確率

0 0.1340 0.1340

1 0.2707 0.4046

2 0.2720 0.6767

3 0.1814 0.8580

4 0.0902 0.9483

5 0.0357 0.9840

6 0.0117 0.9957

7 0.0033 0.9990

8 0.0008 0.9998

9 0.0002 1.0000

10 0.0000 1.0000
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100通り（𝑀 = 100）の番号の中に当選番
号が3通りあるとき、届いた 𝑛枚のうち 𝑙枚
が当たる確率を 𝑛 = 100 の二項分布につ
いて計算すると右表のようになる。

100枚の年賀状が届く場合、1枚も当たらな
い確率は約5%であり、1枚だけ当たる確率
は約15%、2枚が当たる確率は約22%、3枚
が当たる確率は約23%、4枚以上が当たる
確率は約35%である。

補足：当選枚数の確率 𝑙 確率 累積確率

0 0.0490 0.0490

1 0.1486 0.1976

2 0.2244 0.4221

3 0.2252 0.6472

4 0.1689 0.8161

5 0.1010 0.9171

6 0.0502 0.9672

7 0.0213 0.9885

8 0.0079 0.9964

9 0.0026 0.9990

10 0.0006 0.9996

11 0.0002 0.9998

12 0.0001 0.9999
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