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二項分布とその極限
－正規分布とポアソン分布－

［改訂版］
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発生確率が 𝑝の事象を独立に 𝑛 回試行したとき、その事象が 𝑘 回起
こる確率は

𝑃(𝑘) =
𝑛 𝑛 − 1 ∙ ⋯ ∙ 𝑛 − 𝑘 + 1

𝑘 𝑘 − 1 ∙ ⋯ ∙ 1
𝑝𝑘 1 − 𝑝 𝑛−𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝑛𝐶𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘

で表される。この離散確率分布を二項分布という。ここで、

𝑛𝐶𝑘 =
𝑛
𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !

は異なる 𝑛 個のうちから 𝑘 個を（重複なく）選ぶ組合せの数である。

二項分布
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𝑝 = 0.5のとき、𝑛 = 4, 10, 20の二項分布は下図のようになる。

二項分布

𝑛 = 4

𝑛 = 10

𝑛 = 20

𝑘

𝑃
(𝑘
)
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𝑛 = 20のとき、𝑝 = 0.2, 0.5, 0.8の二項分布は下図のようになる。

二項分布

𝑘

𝑃
(𝑘
)

𝑝 = 0.2

𝑝 = 0.5

𝑝 = 0.8
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二項分布の確率の総和は

෍

𝑘=0

𝑛

𝑃(𝑘) = ෍

𝑘=0

𝑛
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

= 𝑝 + 1 − 𝑝
𝑛
= 1

になっている。ここで、二項定理

𝑎 + 𝑏 𝑛 = ෍

𝑘=0

𝑛
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑎𝑘𝑏𝑛−𝑘

を用いた。

二項分布の確率の総和
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二項分布における発生回数 𝑘 の平均は

ത𝑘 = ෍

𝑘=0

𝑛

𝑘𝑃(𝑘) = ෍

𝑘=0

𝑛

𝑘
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

= ෍

𝑘=1

𝑛
𝑛 ∙ 𝑛 − 1 !

𝑘 − 1 ! 𝑛 − 1 − 𝑘 − 1 !
𝑝 ∙ 𝑝𝑘−1 1 − 𝑝 𝑛−1 − 𝑘−1

= 𝑛𝑝෍

𝑙=0

𝑛−1
𝑛 − 1 !

𝑙! 𝑛 − 1 − 𝑙 !
𝑝𝑙 1 − 𝑝 𝑛−1 −𝑙

= 𝑛𝑝 ∙ 𝑝 + 1 − 𝑝
𝑛−1

= 𝑛𝑝

である。

二項分布の平均
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二項分布における発生回数 𝑘 の2乗平均は

𝑘2 = ෍

𝑘=0

𝑛

𝑘2𝑃(𝑘) = ෍

𝑘=0

𝑛

𝑘 𝑘 − 1 𝑃(𝑘) +෍

𝑘=0

𝑛

𝑘𝑃(𝑘)

= ෍

𝑘=0

𝑛

𝑘 𝑘 − 1
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘 + ത𝑘

= ෍

𝑘=2

𝑛
𝑛!

𝑘 − 2 ! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘 + 𝑛𝑝

二項分布の2乗平均
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ここで、第1項は

෍

𝑘=0

𝑛

𝑘 𝑘 − 1 𝑃(𝑘) = ෍

𝑘=2

𝑛
𝑛!

𝑘 − 2 ! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

= ෍

𝑘=2

𝑛
𝑛 𝑛 − 1 ∙ 𝑛 − 2 !

𝑘 − 2 ! 𝑛 − 2 − 𝑘 − 2 !
𝑝2 ∙ 𝑝𝑘−2 1 − 𝑝 𝑛−2 − 𝑘−2

= 𝑛 𝑛 − 1 𝑝2 ෍

𝑙=0

𝑛−2
𝑛 − 2 !

𝑙! 𝑛 − 2 − 𝑙 !
𝑝𝑙 1 − 𝑝 𝑛−2 −𝑙

= 𝑛 𝑛 − 1 𝑝2 ∙ 𝑝 + 1 − 𝑝
𝑛−2

= 𝑛 𝑛 − 1 𝑝2

となる。

二項分布の2乗平均
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したがって、二項分布における発生回数 𝑘 の2乗平均は

𝑘2 = ෍

𝑘=0

𝑛

𝑘2𝑃(𝑘) = ෍

𝑘=0

𝑛

𝑘 𝑘 − 1 𝑃(𝑘) +෍

𝑘=0

𝑛

𝑘𝑃(𝑘)

= 𝑛 𝑛 − 1 𝑝2 + 𝑛𝑝

= 𝑛2𝑝2 + 𝑛𝑝 1 − 𝑝

である。

二項分布の2乗平均
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分散は「2乗平均」と「平均の2乗」との差で求められるから、
二項分布における発生回数 𝑘 の分散は

𝑉 𝑘 = 𝑘2 − ത𝑘2

= 𝑛2𝑝2 + 𝑛𝑝 1 − 𝑝 − 𝑛𝑝 2

= 𝑛𝑝 1 − 𝑝

である。

二項分布の分散



10Kagoshima University wata104@eee

二項分布の確率は試行回数 𝑛 が大きく、かつ ത𝑘 = 𝑛𝑝 ≫ 1 のとき、

𝑃 𝑘 ≈ 𝑓 𝑥 =
1

2𝜋𝜎
𝑒− Τ𝑥−𝜇 2 2𝜎2

に近づく。ここで、𝑓 𝑥  は 𝑥 を連続変数とする確率密度関数であり、
𝜇 = 𝑛𝑝、𝜎2 = 𝑛𝑝 1 − 𝑝 である。この確率分布を正規分布という。

正規分布

𝑘, 𝑥

𝑃
𝑘
,𝑓
(𝑥
) 𝑛 = 20

𝑝 = 0.5

𝜇 = 𝑛𝑝 = 10
𝜎2 = 𝑛𝑝 1 − 𝑝 = 5

𝑃 𝑘

𝑓(𝑥)
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二項分布

𝑃(𝑘) =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

を、発生確率 𝑝 の代わりに、偏差（平均との差） 𝑡 = 𝑘 − 𝜇 = 𝑘 − 𝑛𝑝で
表すと

𝑝 =
𝑘 − 𝑡

𝑛
より

𝑃 𝑡 =
𝑛!

𝑘! 𝑛 − 𝑘 !

𝑘 − 𝑡

𝑛

𝑘

1 −
𝑘 − 𝑡

𝑛

𝑛−𝑘

二項分布から正規分布へ
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=
𝑛!

𝑘! 𝑛 − 𝑘 !

1

𝑛𝑛
𝑘 − 𝑡 𝑘 𝑛 − 𝑘 + 𝑡 𝑛−𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !

𝑘𝑘 𝑛 − 𝑘 𝑛−𝑘

𝑛𝑛
1 −

𝑡

𝑘

𝑘

1 +
𝑡

𝑛 − 𝑘

𝑛−𝑘

=
𝑛!

𝑛𝑛
∙
𝑘𝑘

𝑘!
∙
𝑛 − 𝑘 𝑛−𝑘

𝑛 − 𝑘 !
1 −

𝑡

𝑘

𝑘

1 +
𝑡

𝑛 − 𝑘

𝑛−𝑘

となる。

二項分布から正規分布へ
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𝑛 ≫ 1, 𝑘 ≈ ത𝑘 = 𝑛𝑝 ≫ 1, 𝑛 − 𝑘 ≫ 1かつ 𝑡 ≪ 𝑘, 𝑡 ≪ 𝑛 − 𝑘 の場合を
考える。

𝑁 ≫ 1で成り立つスターリングの近似（付録を参照）

𝑁! = 2𝜋𝑁
𝑁

𝑒

𝑁

および 𝑥 ≪ 1で成り立つ展開

1 + 𝑥 𝑎 = exp log 1 + 𝑥 𝑎 = exp 𝑎 log 1 + 𝑥

= exp 𝑎 𝑥 −
𝑥2

2
+⋯

を用いると

二項分布から正規分布へ
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𝑃 𝑡 ≅
2𝜋𝑛

𝑒𝑛
∙

𝑒𝑘

2𝜋𝑘
∙

𝑒𝑛−𝑘

2𝜋 𝑛 − 𝑘

× exp 𝑘 −
𝑡

𝑘
−
1

2

𝑡

𝑘

2

−⋯

× exp 𝑛 − 𝑘
𝑡

𝑛 − 𝑘
−
1

2

𝑡

𝑛 − 𝑘

2

+⋯

≅
1

2𝜋

𝑛

𝑘 𝑛 − 𝑘
exp −𝑡 −

𝑡2

2𝑘
∙ exp 𝑡 −

𝑡2

2 𝑛 − 𝑘

二項分布から正規分布へ
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=
1

2𝜋

𝑛

𝑘 𝑛 − 𝑘
exp −

𝑡2

2𝑘
−

𝑡2

2 𝑛 − 𝑘

=
1

2𝜋

𝑛

𝑘 𝑛 − 𝑘
exp −

𝑛𝑡2

2𝑘 𝑛 − 𝑘

ここで、
𝑘 𝑛 − 𝑘

𝑛
≈
𝑝𝑛 𝑛 − 𝑝𝑛

𝑛
= 𝑛𝑝 1 − 𝑝 = 𝜎2 より

𝑃 𝑡 ≅
1

2𝜋𝜎
exp −

𝑡2

2𝜎2
=

1

2𝜋𝜎
𝑒− Τ𝑡2 2𝜎2

二項分布から正規分布へ
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偏差（平均との差） 𝑡 = 𝑘 − 𝜇 を 𝑘に戻せば

𝑃 𝑘 ≅
1

2𝜋𝜎
exp −

𝑘 − 𝜇 2

2𝜎2
=

1

2𝜋𝜎
𝑒− Τ𝑘−𝜇 2 2𝜎2

となる。

さらに、離散変数 𝑘 を連続変数 𝑥に変換すれば

𝑃 𝑘 ≈ 𝑓 𝑥 =
1

2𝜋𝜎
𝑒− Τ𝑥−𝜇 2 2𝜎2

となり、正規分布が得られる。

二項分布から正規分布へ
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正規分布の確率密度関数

𝑓 𝑥 =
1

2𝜋𝜎
𝑒− Τ𝑥−𝜇 2 2𝜎2

において、𝑋 = Τ𝑥 − 𝜇 𝜎 とおくと

𝐼2 = න
−∞

∞

𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥

2

= න
−∞

∞

𝑒− Τ𝑋2 2𝜎𝑑𝑋

2

= 𝜎2න
−∞

∞

𝑒− Τ𝑋2 2𝑑𝑋න
−∞

∞

𝑒− Τ𝑌2 2𝑑𝑌 = 𝜎2න
−∞

∞

න
−∞

∞

𝑒− Τ𝑋2+𝑌2 2𝑑𝑋 𝑑𝑌

= 𝜎2න
0

2𝜋

𝑑𝜃න
0

∞

𝑒− Τ𝑟2 2𝑟𝑑𝑟 = 𝜎2 ∙ 2𝜋 −𝑒− Τ𝑟2 2
0

∞
= 2𝜋𝜎2

正規分布の確率の総和
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したがって、正規分布の確率の総和は

න
−∞

∞

𝑓 𝑥 𝑑𝑥 =
1

2𝜋𝜎
න
−∞

∞

𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥 =
1

2𝜋𝜎
∙ 2𝜋𝜎2 = 1

になっている。

正規分布の確率の総和
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正規分布の平均は

ҧ𝑥 = න
−∞

∞

𝑥𝑓 𝑥 𝑑𝑥 =
1

2𝜋𝜎
න
−∞

∞

𝑥𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥

=
1

2𝜋𝜎
න
−∞

∞

𝑥 − 𝜇 𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥 +
1

2𝜋𝜎
න
−∞

∞

𝜇𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥

=
1

2𝜋
න
−∞

∞

𝑋𝑒− Τ𝑋2 2𝑑𝑋 + 𝜇 ∙
1

2𝜋
න
−∞

∞

𝑒− Τ𝑋2 2 𝑑𝑋

= 𝜇

である。

正規分布の平均
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正規分布の分散は

𝑉(𝑥) = න
−∞

∞

𝑥 − ҧ𝑥 2𝑓 𝑥 𝑑𝑥 =
1

2𝜋𝜎
න
−∞

∞

𝑥 − 𝜇 2𝑒− Τ𝑥−𝜇 2 2𝜎2𝑑𝑥

=
𝜎2

2𝜋
න
−∞

∞

𝑋2𝑒− Τ𝑋2 2𝑑𝑋 =
𝜎2

2𝜋
න
−∞

∞

𝑋 ∙ 𝑋𝑒− Τ𝑋2 2𝑑𝑋

=
𝜎2

2𝜋
𝑋 ∙ −𝑒− Τ𝑋2 2

−∞

∞
−

𝜎2

2𝜋
න
−∞

∞

−𝑒− Τ𝑋2 2 𝑑𝑋

= 𝜎2 ∙
1

2𝜋
න
−∞

∞

𝑒− Τ𝑋2 2𝑑𝑋 = 𝜎2

である。

正規分布の分散
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二項分布の確率は試行回数 𝑛 が大きく、かつ発生確率 𝑝 が小さいとき、

𝑃 𝑘 ≈
𝜇𝑘

𝑘!
𝑒−𝜇

に近づく。ここで、𝜇 = 𝑛𝑝である。この確率分布をポアソン分布という。

ポアソン分布

𝑘

𝑃
(𝑘
)

𝜇 = 1

𝜇 = 3

𝜇 = 5
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二項分布

𝑃 𝑘 =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

を、発生確率 𝑝 の代わりに、平均値 𝜇 = 𝑛𝑝で表すと

𝑝 =
𝜇

𝑛
より

𝑃 𝑘 =
𝑛!

𝑘! 𝑛 − 𝑘 !

𝜇

𝑛

𝑘

1 −
𝜇

𝑛

𝑛−𝑘

=
𝑛 𝑛 − 1 ∙ ⋯ ∙ 1

𝑘!

𝜇𝑘

𝑛𝑘
1 −

𝜇

𝑛

𝑛−𝑘

二項分布からポアソン分布へ
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=
𝑛 𝑛 − 1 ∙ ⋯ ∙ 𝑛 − 𝑘 + 1

𝑛𝑘
∙
𝜇𝑘

𝑘!
1 −

𝜇

𝑛

𝑛−𝑘

= 1 ∙ 1 −
1

𝑛
∙ ⋯ ∙ 1 −

𝑘 − 1

𝑛
∙
𝜇𝑘

𝑘!
1 −

𝜇

𝑛

𝑛−𝑘

𝑝 ≪ 1 の場合、𝑘 ≈ ത𝑘 = 𝜇 = 𝑛𝑝 ≪ 𝑛だから

𝑃 𝑘 ≅
𝜇𝑘

𝑘!
1 −

𝜇

𝑛

𝑛

𝑥 ≪ 1 で成り立つ近似式 1 − 𝑥 ≅ 𝑒−𝑥 を用いると

𝑃 𝑘 ≅
𝜇𝑘

𝑘!
𝑒− Τ𝜇 𝑛 𝑛

=
𝜇𝑘

𝑘!
𝑒−𝜇

となり、ポアソン分布が得られる。

二項分布からポアソン分布へ
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ポアソン分布の確率の総和は

෍

𝑘=0

∞

𝑃(𝑘) = ෍

𝑘=0

∞
𝜇𝑘

𝑘!
𝑒−𝜇 = 𝑒−𝜇 ෍

𝑘=0

∞
𝜇𝑘

𝑘!
= 1

になっている。ここで、𝑒𝑥 のマクローリン展開

𝑒𝑥 = ෍

𝑘=0

∞
𝑥𝑘

𝑘!

を用いた。

ポアソン分布の確率の総和
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ポアソン分布における発生回数 𝑘 の平均は

ത𝑘 = ෍

𝑘=0

∞

𝑘𝑃(𝑘) = ෍

𝑘=0

∞

𝑘
𝜇𝑘

𝑘!
𝑒−𝜇 = 𝑒−𝜇 ෍

𝑘=0

∞

𝑘
𝜇𝑘

𝑘!

= 𝑒−𝜇 ෍

𝑘=1

∞
𝜇𝑘

𝑘 − 1 !
= 𝜇𝑒−𝜇 ෍

𝑘=1

∞
𝜇𝑘−1

𝑘 − 1 !

= 𝜇

である。

ポアソン分布の平均
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ポアソン分布における発生回数 𝑘 の2乗平均は

𝑘2 = ෍

𝑘=0

∞

𝑘2𝑃(𝑘) = ෍

𝑘=0

∞

𝑘2
𝜇𝑘

𝑘!
𝑒−𝜇

= 𝑒−𝜇 ෍

𝑘=0

∞

𝑘 𝑘 − 1
𝜇𝑘

𝑘!
+ 𝑒−𝜇 ෍

𝑘=0

∞

𝑘
𝜇𝑘

𝑘!

= 𝑒−𝜇 ෍

𝑘=2

∞
𝜇𝑘

𝑘 − 2 !
+ 𝑒−𝜇 ෍

𝑘=1

∞
𝜇𝑘

𝑘 − 1 !

= 𝜇2 + 𝜇

である。

ポアソン分布の2乗平均
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分散は「2乗平均」と「平均の2乗」との差で求められるから、
ポアソン分布における発生回数 𝑘 の分散は

𝑉 𝑘 = 𝑘2 − ത𝑘2

= 𝜇2 + 𝜇 − 𝜇2

= 𝜇

である。

ポアソン分布の分散
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➢ 発生確率が 𝑝の事象を独立に 𝑛 回試行したとき、その事象が 𝑘 回
起こる確率は、二項分布

𝑃(𝑘) =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

にしたがう。二項分布における発生回数 𝑘の平均は ത𝑘 = 𝑛𝑝、分散
は 𝑉 𝑘 = 𝑛𝑝 1 − 𝑝 である。

➢ 二項分布の確率は試行回数 𝑛 が大きく、かつ ത𝑘 = 𝑛𝑝 ≫ 1 のとき、
𝑥 を連続変数とする正規分布の確率密度関数に近づき、

𝑃 𝑘 ≈ 𝑓 𝑥 =
1

2𝜋𝜎
𝑒− Τ𝑥−𝜇 2 2𝜎2

で表される。ここで、𝜇 = 𝑛𝑝、𝜎2 = 𝑛𝑝 1 − 𝑝 である。

まとめ



29Kagoshima University wata104@eee

➢ 二項分布の確率は試行回数 𝑛 が大きく、かつ発生確率 𝑝 が小さい
とき、平均 ത𝑘 = 𝑛𝑝 = 𝜇 のポアソン分布

𝑃 𝑘 ≈
𝜇𝑘

𝑘!
𝑒−𝜇

に近づく。ポアソン分布における発生回数 𝑘の分散は 𝑉 𝑘 = 𝜇 で
ある。

まとめ
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ガンマ関数の積分表示より

𝑛! = Γ 𝑛 + 1 = න
0

∞

𝑡𝑛e−𝑡d𝑡 = න
0

∞

e−𝑡+𝑛 log 𝑡d𝑡 = න
0

∞

e−𝑓(𝑡)d𝑡

ここで、𝑓 𝑡 = 𝑡 − 𝑛 log 𝑡である。

𝑓 𝑡 を 𝑡 = 𝑛 でテイラー展開すると

𝑓′ 𝑡 = 1 −
𝑛

𝑡
, 𝑓′′ 𝑡 =

𝑛

𝑡2
, 𝑓′′′ 𝑡 = −

2𝑛

𝑡3

より

𝑓 𝑡 = 𝑓 𝑛 +
1

2𝑛
𝑡 − 𝑛 2 −

1

3𝑛2
𝑡 − 𝑛 3 +⋯

付録：スターリングの近似
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𝑛 ≫ 1に対して、e−𝑓(𝑡)は 𝑡 = 𝑛 の付近でのみ大きな値をもつから

𝑛! = න
0

∞

e−𝑓(𝑡)d𝑡 ≈ e−𝑓 𝑛 න
−∞

∞

e− Τ𝑡−𝑛 2 2𝑛d𝑡

= e−𝑛+𝑛 log 𝑛 2𝜋𝑛 = 2𝜋𝑛
𝑛

𝑒

𝑛

を得る。

付録：スターリングの近似

参考文献：小野寺嘉孝「物理のための応用数学」裳華房、1988
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