# 階乗を含む方程式

渡邉 俊夫

## 問題

整数 n についての方程式

$$n! = n^3 - n$$

の解を求めなさい。 ただし、  $n \ge 0$  とする。

# 解

$$n! = n^3 - n = n(n^2 - 1) = n(n+1)(n-1)$$
  
 $0! = 1, 0^3 - 0 = 0$  より、 $n = 0$  は解でない。  
 $1! = 1, 1^3 - 1 = 0$  より、 $n = 1$  も解でない。  
 $2! = 2, 2^3 - 2 = 6$  より、 $n = 2$  も解でない。  
よって、 $n \neq 0, 1, 2$  であるから、両辺を  $n(n-1)(n-2)$  で割ると  
 $(n-3)! = \frac{n+1}{n-2} = \frac{(n-2)+3}{n-2} = 1 + \frac{3}{n-2}$   
ここで、左辺は整数であるから、 $n-2 = 1$  or  $3$   $\therefore n = 3$  or  $5$   
しかし、 $3! = 6, 3^3 - 3 = 27 - 3 = 24$  より、 $n = 3$  は解でない。  
 $5! = 120, 5^3 - 5 = 125 - 5 = 120$  より、 $n = 5$  が求める解である。

### 検算

$$n! = n^3 - n = (n+1)n(n-1)$$
  
 $n = 5$  のとき  
 $n! = 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$   
 $(n+1)n(n-1) = 6 \cdot 5 \cdot 4$   
 $3 \cdot 2 = 6$  だから、確かに両辺は等しい。

### 問題(改)

実数 x についての方程式

$$x! = x^3 - x$$

の解を求めなさい。ただし、 $x \ge 0$ とする。

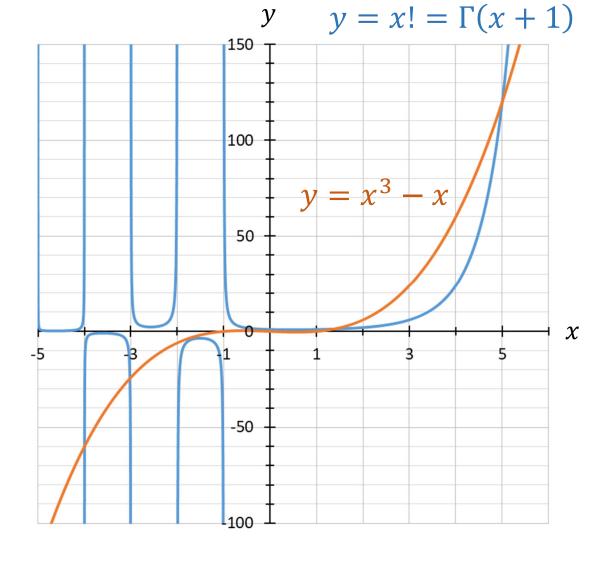


#### 実数 x の階乗は、ガンマ関数を用いて

$$x! = \Gamma(x+1) = \int_0^\infty t^x e^{-t} dt$$

で表される。

$$y = x! = \Gamma(x + 1) と y = x^3 - x$$
 の  
グラフは右図のようになり、  
 $(x,y) = (5,120)$  に交点をもつ。



Kagoshima University wata104@eee



 $y = x! = \Gamma(x + 1) と y = x^3 - x$  の グラフを拡大すると、1 < x < 2 に もう1つ交点があることがわかる。

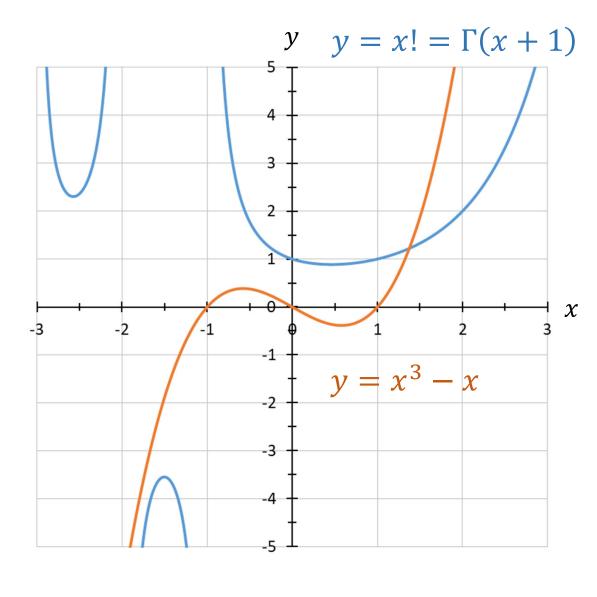
#### 解を数値的に求めると

$$x = 1.374395...$$

$$y = 1.221782 \dots$$

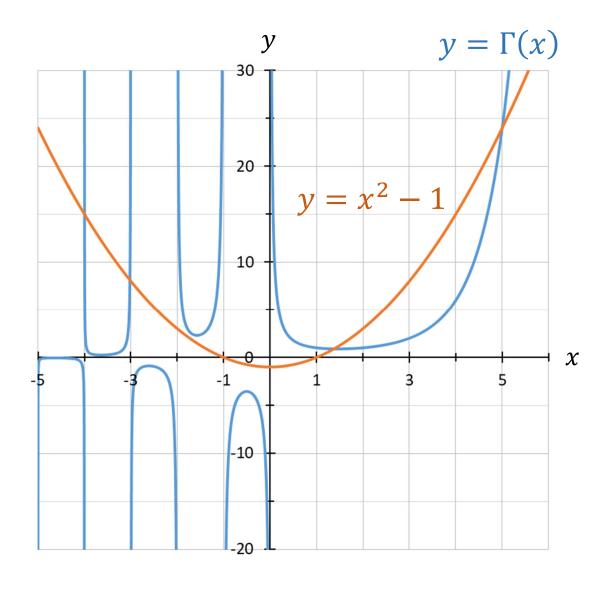
となる。したがって、 $x \ge 0$  における  $x! = x^3 - x$ 

の解は  $x = 5 \ge x = 1.374395 \dots$  である。



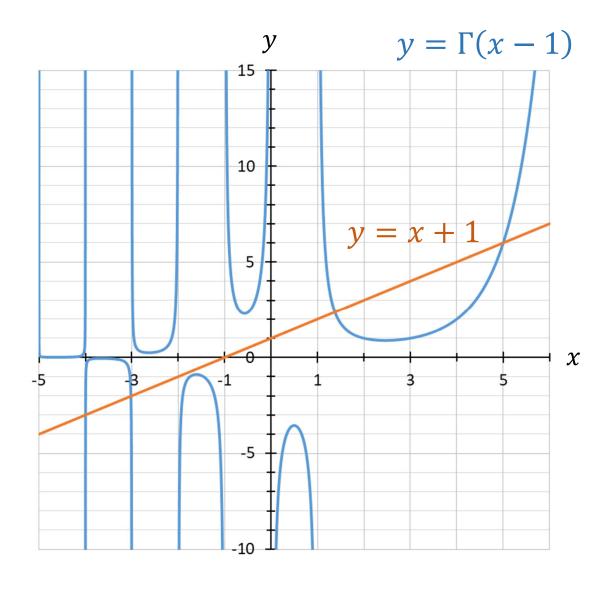
### 検算

$$x! = \Gamma(x+1) = x\Gamma(x)$$
  
であるから、 $x \neq 0$  より  
 $\Gamma(x+1) = x^3 - x$   
の両辺を  $x$  で割ると  
 $\Gamma(x) = x^2 - 1$   
となる。 $y = \Gamma(x)$  と  $y = x^2 - 1$  の  
グラフは  $x \geq 0$  において、2つの交点  
 $(x,y) = (5,24)$ ,  
 $(1.374395 ..., 0.888961 ...)$   
をもつ。



### 検算

$$\Gamma(x) = (x-1)\Gamma(x-1)$$
であるから、 $x \neq 1$  より  $\Gamma(x) = x^2 - 1$  の両辺を  $x-1$  で割ると  $\Gamma(x-1) = x+1$  となる。 $y = \Gamma(x-1)$  と  $y = x+1$  の グラフは  $x \geq 0$  において、2つの交点  $(x,y) = (5,6)$ ,  $(1.374395..., 2.374395...)$ をもつ。



### 付録:ガンマ関数

ガンマ関数  $\Gamma(x)$  は

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

で定義される。

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt = [-t^{x-1} e^{-t}]_0^\infty + (x-1) \int_0^\infty t^{x-1} e^{-t} dt$$
$$= (x-1)\Gamma(x-1)$$

$$\Gamma(1) = \int_0^\infty e^{-t} dt = [-e^{-t}]_0^\infty = 1$$

より、正の整数 n に対して、 $\Gamma(n) = (n-1)!$  である。

### 付録:ガンマ関数

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt = \int_0^\infty \frac{e^{-u^2}}{u} 2u du = 2 \int_0^\infty e^{-u^2} du$$

これより、正の整数 m に対して

$$(2m-1)!! = (2m-1) \cdot (2m-3) \cdot \dots \cdot 3 \cdot 1$$

$$\Gamma\left(m + \frac{1}{2}\right) = \frac{2m - 1}{2}\Gamma\left(m - \frac{1}{2}\right) = \frac{(2m - 1)!!}{2^m}\sqrt{\pi}$$

### 付録:ガンマ関数

#### 正の整数 mに対して

$$\Gamma\left(m+\frac{1}{2}\right) = \frac{(2m-1)!!}{2^m}\sqrt{\pi}$$

#### 二重階乗

$$(2m-1)!! = (2m-1) \cdot (2m-3) \cdot \dots \cdot 3 \cdot 1$$

より

$$0.5! = \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2} = 0.8862269 \dots$$

$$1.5! = \Gamma\left(\frac{5}{2}\right) = \frac{3\sqrt{\pi}}{4} = 1.329340 \dots$$