三角関数の厳密値 (10°刻み)

渡邉俊夫

目標

三角関数 $\sin \theta$ の厳密値を 10° 刻みで求める。

余角の公式 $\sin(90^{\circ} - \theta) = \cos \theta$, $\cos(90^{\circ} - \theta) = \sin \theta$ 補角の公式 $\sin(180^\circ - \theta) = \sin \theta$, $\cos(180^\circ - \theta) = -\cos \theta$ 負角の公式 $\sin(-\theta) = -\sin\theta$, $\cos(-\theta) = \cos\theta$ 周期性 $\sin(\theta + 360^{\circ} \times n) = \sin \theta$, $\cos(\theta + 360^{\circ} \times n) = \cos \theta$ (n は整数) より、 $\theta = 0^{\circ}, 10^{\circ}, 20^{\circ}, \cdots, 90^{\circ}$ において $\sin \theta$ の値を求めれば、 10° の 整数倍の任意の角度 θ における $\sin \theta$ と $\cos \theta$ の値が定まる。 τ なお、 θ が鋭角の範囲 $0^{\circ} \le \theta \le 90^{\circ}$ では、 $0 \le \sin \theta \le 1$, $1 \ge \cos \theta \ge 0$ である。

3倍角の公式

3倍角の公式
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$
 より $\sin(3 \times 10^\circ) = 3 \sin 10^\circ - 4 \sin^3 10^\circ$

$$x = \sin 10^\circ$$
 とおくと、 $\sin 30^\circ = \frac{1}{2}$ だから

$$\frac{1}{2} = 3x - 4x^3$$

よって、x は3次方程式

$$x^3 - \frac{3}{4}x + \frac{1}{8} = 0$$

の解である。

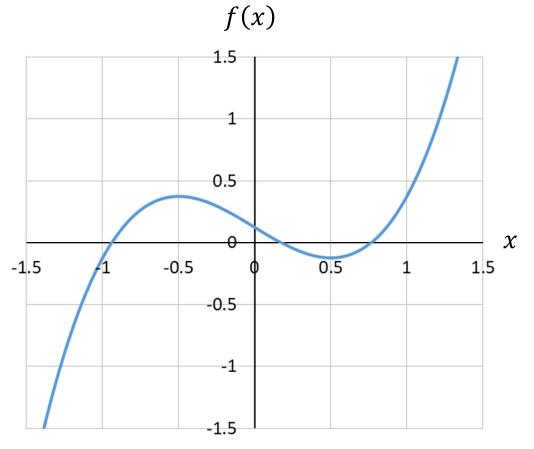
3次方程式

$$f(x) = x^3 - \frac{3}{4}x + \frac{1}{8}$$
 のグラフは右下図のようになり、

3次方程式
$$x^3 - \frac{3}{4}x + \frac{1}{8} = 0$$
 は

 $-1 \le x \le 1$ の範囲に

3つの実数解をもつ。



カルダノの方法

$$x^3 - 3uvx - (u^3 + v^3)$$
 は、1 の3乗根 $\omega = \frac{-1 + i\sqrt{3}}{2}$ を用いると $x^3 - 3uvx - (u^3 + v^3) = (x - u - v)(x - \omega u - \overline{\omega}v)(x - \overline{\omega}u - \omega v)$ と因数分解できる。これより、3次方程式 $x^3 - \frac{3}{4}x + \frac{1}{8} = 0$ の解は $u^3 + v^3 = -\frac{1}{8}$, $uv = \frac{1}{4}$

とおくと、x = u + v, $\omega u + \overline{\omega}v$, $\overline{\omega}u + \omega v$ である。

3次方程式の解

$$\therefore u^3 = \frac{-4 \pm i\sqrt{48}}{64} = \frac{-1 \pm i\sqrt{3}}{16} = \frac{-1 \pm i\sqrt{3}}{8 \cdot 2}$$

求める解x = u + v はu,v について対称だから、上式の正号をu, 負号をvとすると、

$$u^{3} = \frac{-1 + i\sqrt{3}}{8 \cdot 2} = \frac{\omega}{8}, \quad v^{3} = \frac{-1 - i\sqrt{3}}{8 \cdot 2} = \frac{\overline{\omega}}{8}$$

3次方程式の解

$$u^3 = \frac{\omega}{8}$$
, $v^3 = \frac{\overline{\omega}}{8}$ より、3次方程式 $x^3 - \frac{3}{4}x + \frac{1}{8} = 0$ の3つの実数解は $x_1 = u + v = \frac{\omega^{1/3} + \overline{\omega}^{1/3}}{2} = \text{Re}\,\omega^{1/3}$ $x_2 = \omega u + \overline{\omega}v = \frac{\omega \cdot \omega^{1/3} + \overline{\omega} \cdot \overline{\omega}^{1/3}}{2} = \frac{\omega^{4/3} + \overline{\omega}^{4/3}}{2} = \text{Re}\,\omega^{4/3}$ $x_3 = \overline{\omega}u + \omega v = \frac{\overline{\omega} \cdot \omega^{1/3} + \omega \cdot \overline{\omega}^{1/3}}{2} = \frac{\overline{\omega}^{2/3} + \omega^{2/3}}{2} = \text{Re}\,\omega^{2/3}$

と表される。ただし、 $\omega^{1/3}$, $\omega^{4/3}$, $\omega^{2/3}$ はいずれも主値をとるものとする。 (表計算ソフトウェアのExcelでは、IMPOWER関数で計算できる)

10°, 50°, 70° の値

3次方程式
$$x^3 - \frac{3}{4}x + \frac{1}{8} = 0$$
 の3つの実数解 $x_1 = \text{Re }\omega^{1/3} = 0.766044 \dots$ $x_2 = \text{Re }\omega^{4/3} = 0.939693 \dots$ $x_3 = \text{Re }\omega^{2/3} = 0.173648 \dots$ のうち、 $x_3 = \sin\frac{30^\circ}{3} = \sin 10^\circ$ であり、 $x_1 = \sin\frac{150^\circ}{3} = \sin 50^\circ$, $x_2 = \sin\frac{-210^\circ}{3} = \sin(-70^\circ) = -\sin 70^\circ$ である。

$$\sin 30^{\circ} = \sin 150^{\circ} = \sin(-210^{\circ}) = \frac{1}{2}$$

20°, 40°, 80° の値

また、それぞれの虚部は

```
\operatorname{Im} \omega^{1/3} = \cos 50^{\circ}, \operatorname{Im} \omega^{4/3} = \cos(-70^{\circ}), \operatorname{Im} \omega^{2/3} = \cos 10^{\circ}
だから
      \sin 40^{\circ} = \sin(90^{\circ} - 50^{\circ}) = \cos 50^{\circ} = \operatorname{Im} \omega^{1/3} = 0.642788 \dots
      \sin 20^{\circ} = \sin(90^{\circ} - 70^{\circ}) = \cos 70^{\circ}
                                                     = \cos(-70^{\circ}) = \text{Im } \omega^{4/3} = 0.342020 \dots
      \sin 80^{\circ} = \sin(90^{\circ} - 10^{\circ}) = \cos 10^{\circ} = \text{Im } \omega^{2/3} = 0.984808 \dots
となる。
```


角度 θ	$\sin \theta$	
	厳密値	近似値
0°	0	0
10°	${ m Re}\omega^{2/3}$	0.173648
20°	${ m Im}\omega^{4/3}$	0.342020
30°	1/2	0.5
40°	${ m Im}\omega^{1/3}$	0.642788
50°	${ m Re}\omega^{1/3}$	0.766044
60°	$\sqrt{3}/2$	0.866025
70°	${ m Re}\omega^{4/3}$	0.939693
80°	${ m Im}\omega^{2/3}$	0.984808
90°	1	1

付録:3倍角の公式

ド・モアブルの公式
$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$
 より $(\cos \theta + i \sin \theta)^3 = \cos^3 \theta + i 3 \cos^2 \theta \sin \theta - 3 \cos \theta \sin^2 \theta - i \sin^3 \theta$ $= \cos^3 \theta - 3 \cos \theta \sin^2 \theta + i (3 \cos^2 \theta \sin \theta - \sin^3 \theta)$ だから $\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta = \cos^3 \theta - 3 \cos \theta (1 - \cos^2 \theta)$ $= 4 \cos^3 \theta - 3 \cos \theta$

$$\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta = 3(1 - \sin^2 \theta) \sin \theta - \sin^3 \theta$$
$$= 3\sin \theta - 4\sin^3 \theta$$

付録:カルダノの方法

$$(X + Y + Z)(X^2 + Y^2 + Z^2 - XY - YZ - ZX)$$

= $X^3 + Y^3 + Z^3 + X(Y^2 + Z^2) + Y(X^2 + Z^2) + Z(X^2 + Y^2)$
 $-X(XY + YZ + ZX) - Y(XY + YZ + ZX) - Z(XY + YZ + ZX)$
= $X^3 + Y^3 + Z^3 - 3XYZ$
である。さらに、1 の3乗根 ω に対して $\omega \overline{\omega} = 1$, $\omega + \overline{\omega} = -1$ より
 $(X + \omega Y + \overline{\omega} Z)(X + \overline{\omega} Y + \omega Z)$
= $X^2 + Y^2 + Z^2 + (\omega + \overline{\omega})(XY + ZX) + (\omega^2 + \overline{\omega}^2)YZ$
= $X^2 + Y^2 + Z^2 - XY - YZ - ZX$
だから
 $X^3 + Y^3 + Z^3 - 3XYZ = (X + Y + Z)(X + \omega Y + \overline{\omega} Z)(X + \overline{\omega} Y + \omega Z)$

付録:カルダノの方法

$$X^3 + Y^3 + Z^3 - 3XYZ = (X + Y + Z)(X + \omega Y + \overline{\omega}Z)(X + \overline{\omega}Y + \omega Z)$$
 において、 $X = x, Y = -u, Z = -v$ とすると $x^3 - u^3 - v^3 - 3uvx = x^3 - 3uvx - (u^3 + v^3)$ $= (x - u - v)(x - \omega u - \overline{\omega}v)(x - \overline{\omega}u - \omega v)$ が成り立つ。したがって、 x の3次方程式 $x^3 - 3uvx - (u^3 + v^3) = 0$ の解は $x = u + v$, $\omega u + \overline{\omega}v$, $\overline{\omega}u + \omega v$ である。